
1. Introduction
Sea surface height (SSH) along the west coast of Australia shows marked interannual and decadal vari-
ability (Feng et al., 2010, 2011) and is key to understanding climate variability in the tropical and south-
eastern Indian Ocean. Anomalously elevated (or depressed) SSH along the west coast of Australia often 
accompanies warm (cool) surface water, which is known as a Ningaloo Niño (Niña) event and can cause 
coral bleaching, fish kills and anomalous variability in atmospheric circulations and precipitation (Feng 
et al., 2013; Kataoka et al., 2014). Moreover, SSH anomalies along the west coast of Australia propagate to 
the west into the interior of the basin and modulates basin-wide meridional transport of the subtropical 
gyre in the south Indian Ocean (Eabry et al., 2021; Menezes & Vianna, 2019; Nagura & McPhaden, 2021; 
Volkov et al., 2020; Zhuang et al., 2013).

Previous studies pointed out that El Niño Southern Oscillation (ENSO) in the tropical Pacific Ocean is the 
primary forcing of SSH variability along the west coast of Australia. Surface wind anomalies in the tropical 
Pacific Ocean during ENSO events force SSH variations, which propagate from the tropical western Pacific 
Ocean to the region along the west coast of Australia via Indonesia archipelago (Clarke, 1991; Clarke & 
Liu, 1994; Feng et al., 2010, 2011; Potemra, 2001; Wijffels & Meyers, 2004). Local meridional winds can 
at times play a role, like during Ningaloo Niño events (Feng et al., 2013), but SSH along the west coast of 
Australia is more highly correlated with remote zonal winds in the equatorial Pacific Ocean on interannual 
timescales (Nagura & McPhaden, 2021).

Abstract Sea surface height (SSH) along the west coast of Australia is key to local climate and is 
strongly forced by remote surface wind variability related to El Niño Southern Oscillation (ENSO) in the 
tropical Pacific Ocean. This study provides a method to predict interannual variability in SSH along the 
west coast of Australia using a simple 1.5-layer dynamical ocean model forced by a statistical atmospheric 
model for ENSO-related winds. The model has realistic coastlines and is driven by reanalysis surface 
winds regressed onto an ENSO index. The model when run in hindcast mode to predict past variability 
can simulate tide gauge observations at Fremantle along the west coast of Australia up to 13 months in 
advance, which outperforms persistence. We conclude that this methodology can be useful as a baseline 
for gauging the performance of more sophisticated forecast models for predicting SSH variations along the 
west coast of Australia.

Plain Language Summary Sea surface height (SSH) along the west coast of Australia is key 
to regional climate and is strongly forced by remote surface wind variability related to El Niño Southern 
Oscillation (ENSO) in the tropical Pacific Ocean. Previous studies predicted interannual variability in SSH 
in this region using sophisticated ocean-atmosphere coupled general circulation models, but their ocean 
models had coarse horizontal resolution, required to reduce computational burden. This study provides 
a much simpler method to predict SSH variability along the west coast of Australia using a simple ocean 
dynamical model with realistic coastlines forced by ENSO-related atmospheric winds. Our model, run 
in hindcast mode to predict past SSH variability, is able to simulate SSH anomalies along the west coast 
of Australia up to 13 months in advance. A true forecast system to predict future variations would also 
require prediction of ENSO. However, this methodology can be useful as a baseline for gauging the 
performance of more sophisticated model forecast systems.
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Using an ocean-atmosphere coupled general circulation mod-
el (CGCM), Hendon and Wang  (2010) successfully predicted 
SSH anomalies at Fremantle with the lead times of 9  months, 
and Doi et  al.  (2013) predicted sea surface temperature (SST) 
anomalies off  the northwest coast of  Australia with a lead time 
of 6  months. The skill of  these predictions in each case was at-
tributed to the predictability of  ENSO. However, the horizontal  
resolution of the ocean models was coarse (zonal grid intervals 
of  2°), which may have impeded the accurate simulation of SSH 
anomalies propagating through the Indonesia Archipelago and 
along the Australian coast. To mitigate this problem, Hendon and 
Wang (2010) adopted an empirical downscaling based on forecasts 
by a CGCM.

In this study we develop a much simpler methodology for predicting SSH 
anomalies along the west coast of Australia using a 1.5-layer dynamical 
model and ENSO-related winds. We illustrate the method by running the 
model in hindcast mode that is, “predicting” past variability assuming 
perfect knowledge about ENSO conditions. A true forecast system to pre-
dict future variations would also require prediction of ENSO. Thus, our 
results indicate an upper limit on how predictable SSH is in the southeast 
Indian Ocean based on the simple dynamical model. Even so, we are able 
to hindcast SSH anomalies along the west coast of Australia at lead times 
of up to 13 months, which significantly outperforms forecasts based on 
persisting anomalies forward in time from a given initial condition (i.e., 
a persistence forecast).

The result of this paper is structured as follows. Section 2 introduces data 
used and the model formulation. Section 3 describes the method of SSH 
hindcasts. Section 4 presents results, and Section 5 summarizes our main 
findings.

2. Data and Model
We obtained monthly averages of SSH from tide gauge observations at 
Fremantle (32°S, 116°E) along the west coast of Australia (red cross in 

Figure 1a). The time series at Fremantle is available since 1897. Data gaps shorter than 12 months were 
filled by linear interpolation. The inverted barometer effect was removed using sea level pressure obtained 
from ERA5 (Hersbach et al., 2020) for the period from 1979 to 2020 following the method of Ponte (2006). 
We used the multivariate ENSO index Version 2 (Wolter & Timlin, 1993) to define ENSO events. The mul-
tivariate ENSO index was computed by applying empirical orthogonal function analysis to anomalies of 
five variables in the tropical Pacific Ocean, that is, SST, sea level pressure and surface zonal and meridional 
winds obtained from JRA-55 reanalysis (Kobayashi et al., 2015) and outgoing longwave radiation obtained 
from the NOAA Climate Data Record. We also used monthly averages of surface wind stresses for the period 
from 1979 to 2020 provided by ERA5, which assimilates various satellite observations, including atmospher-
ic motion vectors and scatterometer wind (Hersbach et al., 2020). Anomalies of tide gauge observations and 
ERA5 wind stresses were computed as the deviation from their monthly climatologies for the period from 
1979 to 2020.

Nagura and Masumoto (2015) described the governing equations for the 1.5-layer model in detail. We used 
a linear version, with advection terms ignored. The model domain was prescribed to be 20°E–65°W and 
55°S–65°N (Figure 1a) with a mean layer thickness and reduced gravity set to 150 and 0.05 m s−2, respec-
tively. The model has a horizontal model grid spacing of 0.5° in longitude and latitude and includes pas-
sages through the Indonesian Archipelago so to allow for simulation of the Indonesian Throughflow. The 
coastlines were obtained from ETOPO5 (ETOPO5, 1988). We averaged ETOPO5 over 0.5° × 0.5° boxes and 

Figure 1. (a) Model domain. Black shades denote land grids. Note 
that ocean areas shallower than 200 m were designated as land and the 
marginal seas were filled by land. The red “X” indicates the tide gauge 
station at Fremantle. (b) Sea surface height (SSH) anomalies at Fremantle 
observed by tide gauge (black) and simulated by the 1.5-layer model in 
the control run (red). Both time series are detrended and smoothed by a 
13-month running mean filter.



Geophysical Research Letters

NAGURA AND MCPHADEN

10.1029/2021GL094592

3 of 9

set grid points where the ocean bottom is shallower than 200 m as land. Some of the marginal seas were 
filled by land as is seen in Figure 1a. The model domain is blocked by walls at the western and southern 
boundaries. The layer thickness was restored toward the mean layer thickness near the southern wall with a 
restoring time scale of 10 days to prevent coastal Kelvin waves from propagating along this artificial bound-
ary. A weak Newtonian damping (with the coefficient of 2 × 10−8 s−1) and horizontal diffusivity (with the 
coefficient of 400 m2 s−1) were applied to momentum.

We forced the 1.5-layer model by ERA5 surface wind stress anomalies from 1979 to 2020, which we refer to 
as the control run. Simulated SSH anomalies compare well with tide gauge observations at Fremantle (Fig-
ure 1b), indicating that the model correctly reproduces processes by which SSH anomalies propagate from 
the western Pacific Ocean to the west coast of Australia. The correlation coefficient and neutral regression 
between the observed and simulated time series are respectively 0.87, which exceeds the 99% level of confi-
dence, and 0.82 ± 0.22 (95% level of confidence), which is indistinguishable from unity.

3. Method
The target of our hindcasts is SSH anomalies at Fremantle, where a long record of tide gauge observations 
exists. Satellite altimetry shows that SSH anomalies are in phase along the west coast of Australia with the 
amplitude gradually decreasing poleward (Menezes & Vianna, 2019), which is a consequence of poleward 
propagation of coastal Kelvin waves. This indicates that SSH anomalies at Fremantle are representative of 
SSH variability all along the coast.

We conducted hindcast experiments using the 1.5-layer model in which the model was driven by ENSO-re-
lated winds obtained from regression analysis. Considering that ENSO events peak in boreal winter, we 
used the December–February (DJF) mean of the multivariate ENSO index as the index for ENSO events and 
regressed ERA5 surface wind stresses in each calendar month onto this index. The ENSO index was normal-
ized by its standard deviation before the analysis. Considering the asymmetry of patterns of surface wind 
anomalies during El Niño and La Niña events (Hoerling et al., 1997; McPhaden & Zhang, 2009; Okumura 
& Deser, 2010), we conducted regression analysis separately for years when the DJF mean of the ENSO 
index was positive and for those when the index was negative. Regressed zonal wind stress anomalies are 
eastward east of 170°E in the tropical Pacific Ocean near the equator in DJF of El Niño years (Figure 2a), 
which turn westward in the subsequent June (Figure 2c). In DJF during a La Niña event, regressed zonal 
wind stress anomalies tend to be westward west of 150°W along the equatorial Pacific Ocean (Figure 2b) 
and last for about three years afterward (Figure 2d). In both of El Niño and La Niña events, regressed zonal 
wind stress anomalies in the tropical Pacific Ocean are slightly shifted to the south of the equator in DJF, 
which is consistent with results of Harrison (1987) and Okumura and Deser (2010). Note that the DJF mean 
of the multivariate ENSO index is highly correlated with SST anomalies in the equatorial Pacific Ocean 
between 160°W and 110°W (figure not shown) and representative of both the eastern Pacific and central Pa-
cific ENSO events (Ashok et al., 2007; Kao & Yu, 2009; Kug et al., 2009; Larkin & Harrison, 2005). Marshall 
et al. (2015) argued that these two flavors of ENSO events have different impacts on sea level pressure and 
SST anomalies in the southeastern Indian Ocean. Owing to the short analysis period however, we do not 
distinguish between these two types of events in this study.

The ocean dynamical model was driven by a statistical model for wind stress anomalies during 12 ENSO 
events in which wind stresses were determined based on regression against the ENSO index as  

  ( ) ( )n E i , 
where E 


 denotes the wind stress vector, E 

 regression coefficients for zonal and meridional wind stress, E the 
ENSO index, n lead months and i the index to ENSO events. ENSO events are defined as the years when the 
magnitude of the ENSO index exceeds its standard deviation (Figure 2e). The hindcast experiments were 
initialized from four start dates: June in Year 0, September in Year 0, December in Year 0 or March in Year 
1 (abbreviated as June[0], September[0], December[0], and March[1] hereafter). Here, Year 0 means the 
year when an ENSO event develops and grows to its peak (e.g., 1982 for 1982–1983 El Niño event) and Year 
1 means the year subsequent to Year 0. The hindcast experiments were integrated for 3–4 years, to Decem-
ber of Year 4. Output from the control run were used as the initial conditions. Predicted SSH anomalies at 
Fremantle are smoothed by a 13-month running mean filter and compared with similarly smoothed SSH 
anomalies obtained from tide gauge.
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We also tested a purely statistical forecast approach by regressing observed Fremantle SSH anomalies onto 
the DJF mean of the ENSO index separately for El Niño and La Niña events. A statistical hindcast was made 
as h n E i  ( ) ( ), where h denotes Fremantle SSH anomalies and β is the regression coefficients of Fremantle 
SSH. We compare results for this model with the dynamically based prediction scheme in the next section.

Figure 2. (a) December–February (DJF) mean of surface wind stress anomalies regressed onto the DJF mean of the 
multivariate El Niño Southern Oscillation (ENSO) index for El Niño events. The DJF mean of the ENSO index was 
normalized by its standard deviation before regression analysis. Box indicates the region from 5°S to 5°N and from 
170°E to 130°W. (b) As in (a), but for La Niña events. (c) Time series of zonal wind stress anomalies regressed onto the 
DJF mean of the multivariate ENSO index for El Niño events averaged over the box shown in (a). (d) As in (c), but for 
La Niña events. (e) DJF mean of the multivariate ENSO index. The index is normalized by its standard deviation. The 
value at 1980 shows the average over December 1980 to February 1981, for example. Dashed lines show ±1. Red and 
blue filled circles illustrate El Niño and La Niña years, respectively.
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4. Results
Hindcasted SSH anomalies compare well with observed anomalies in 
1982–1986, 1997–2002, 2007–2011, 2011–2014, and 2015–2019 (Fig-
ure  3). Model hindcasts are less successful during the period 1986–
1995. In 1986–1987, warm SST anomalies persisted for a few years in 
the equatorial Pacific Ocean and the 1991–1992 event was the start 
of 4 successive warm years (Figure 2e). These events did not follow 
the evolution of El Niño events obtained from our regression analysis, 
in which El Niño peaks in December and turns to La Niña in next 
boreal summer (Figure 2c), as is observed in 1982–1983, 1997–1998, 
and 2015–2016. However, except in these two events, model hindcasts 
were relatively skillful.

We compare results between model hindcasts and persistence in terms 
of anomaly correlation coefficients and root-mean-square (RMS) differ-
ences (Figure 4). Persistence forecasts assume that SSH anomalies at the 
initial time remain constant afterward. Correlation coefficients and RMS 
differences were computed in comparison with tide gauge observations at 
Fremantle. At most of the lead times, correlation coefficients are higher 
and RMS differences are lower for model hindcasts than for persistence 
forecasts, which indicates that model hindcasts outperform persistence 
forecasts.

For model hindcasts, the anomaly correlation drops below the 99% 
confidence level at lead times of 10–13 months. The decrease of corre-
lation does not clearly depend on the season when the hindcast starts. 
On the other hand, correlation drops below the 99% level at a lead time 
of 5 months for persistence forecasts that start from June(0), whereas 
correlation becomes lower than the 99% level at lead times of 10, 9, 
and 8 months for persistence forecasts that start from September(0), 
December(0), and March(1), respectively. This seasonality in skill may 
reflect the fact that ENSO events are still developing in June(0) and 
related SSH anomalies at Fremantle tend to be small in amplitude and 
susceptible to noise contamination, which makes a persistence fore-
cast less reliable. On the other hand, ENSO-related anomalies have 
grown in amplitude by September and December and begin to decay 
in amplitude in March in Year 1. A persistence forecast is relatively 
more reliable from these start dates. As a consequence, the difference 
in skill between model hindcasts and persistence forecasts is largest 
for simulations that start from June(0).

RMS differences are consistent with the above considerations. RMS dif-
ferences for model hindcasts exceed the standard deviation of observed 
Fremantle SSH anomalies first at lead times of 9–13 months. Those for 
persistence forecasts become larger than the standard deviation first at 
lead times of 4, 6, 8, and 6 months, if the forecast starts from June(0), 
September(0), December(0), and March(1), respectively. Again, the dif-
ference in skill between model hindcasts and persistence forecasts is larg-
est when the forecasts start from June(0).

The lead time of model hindcasts that start from June(0) is 13 months, based on when the correlation 
between observations and hindcast results drops below the 99% confidence level. This lead time is partly 
due to the statistical model for ENSO-related winds. Zonal wind anomalies during an El Niño event decay 
in boreal spring in Year 1 (Figure 2c), which provides 9 months lead time if a hindcast starts from June(0). 

Figure 3. Sea surface height (SSH) anomalies at Fremantle observed by 
tide gauge (black) and hindcasted by the 1.5-layer model and the statistical 
model for El Niño Southern Oscillation (ENSO)-related winds (red, blue, 
green, and orange lines) for the period (a) from 1980 to 1990, (b) from 
1990 to 2000, (c) from 2000 to 2010 and (d) from 2010 to 2020. A 13-month 
running mean was applied. Observed time series was detrended. Red, blue, 
green, and orange lines show results for which the hindcast experiment 
starts since June in Year 0, September in Year 0, December in Year 0 and 
March in Year 1, respectively.
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It is likely that the response time of SSH variability along the west coast of Australia to zonal winds in 
the equatorial Pacific is involved as well. Nagura and McPhaden (2021) showed that the time lag between 
zonal wind anomalies in the equatorial Pacific Ocean and SSH anomalies along the west coast of Austral-
ia is about 5 months, which is owing to the time required for Pacific winds to force local SSH variability 
plus the time required for SSH variability to propagate to the west coast of Australia via the Indonesia 
Archipelago. The sum (9 + 5 = 14 months) roughly explains the lead time of the model hindcasts.

Hindcast skill discussed above was evaluated using time series smoothed by a 13-month running mean 
filter. The skill evaluated from unsmoothed time series was noisy, but still correlation for model hindcasts 

Figure 4. (a, c, e, g) Anomaly correlation coefficients and (b, d, f, h) root-mean-square (RMS) differences between tide 
gauge observations and numerical model hindcasts (black line) and between tide gauge observations and persistence 
forecasts (red line) at Fremantle. Dashed line shows the 99% confidence limit in (a, c, e, g) and the standard deviation of 
observed Fremantle sea surface height (SSH) anomalies in (b, d, f, h). The hindcast experiments start in (a and b) June 
in Year 0, (c and d) September in Year 0, (e and f) December in Year 0 and (g and h) March in Year 1. Correlations and 
RMS differences were computed using the time series smoothed by a 13-month running mean.
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starting from June(0) exceeds the 99% confidence level up to a lead time of 11 months (Figures S1 and S2). 
Correlation for persistence forecasts starting from June(0) drops below the 99% level at a lead time of 
3 months, which again indicates that the model outperforms persistence.

For comparison with our dynamical model results, we compared the purely statistical model hindcasts 
of Fremantle SSH anomalies using the multivariate ENSO index as a predictor (Figure S3). Results from 
the purely statistical model show correlations higher than the 99% confidence level at lead times up to 
14  months from June(0) initial conditions (Figure  S3a), which is comparable to the correlation skill of 
the numerical model hindcasts (Figure 4a). On the other hand, RMS differences for the purely statistical 
hindcasts starting from June(0) are as large as those for persistence (Figure  S3b) and larger than those 
for the numerical model hindcasts (Figure 4b). Similarly, anomaly correlations for the purely statistical 
hindcasts starting from September(0) and December(0; Figures S3c and S3e) are comparable with those 
for the numerical model hindcasts (Figures 4c and 4e), but RMS differences for the statistical hindcasts are 
larger than those for numerical model hindcasts (Figures 4d, 4f, S3d and S3f). For hindcasts starting from 
March(1), correlations are lower and RMS differences are larger for the statistical model than for the nu-
merical model (Figures 4g, 4h, S3g and S3h). Thus, the purely statistical model is able to simulate the phase 
of SSH anomalies as well as the numerical model, but it is worse than the numerical model in simulating 
anomaly amplitudes.

5. Summary
This study describes a statistical-dynamical forecast methodology for SSH anomalies along the west coast 
of Australia using a 1.5-layer ocean model and a statistical atmospheric model related to ENSO. The ocean 
model is linear with realistic Indo-Pacific Ocean coastlines, including passages through the Indonesian 
Archipelago. The atmospheric model was constructed by regressing ERA5 surface wind stress onto the DJF 
mean of the multivariate ENSO index. We illustrate the skill of this methodology by hindcasting past vari-
ability assuming perfect knowledge of ENSO. Results showed that model hindcasts outperform persistence 
in terms of anomaly correlation coefficients and RMS differences. The difference in skill between model 
hindcasts and persistence is largest when hindcasts start from June(0). An ENSO event is not mature yet in 
June(0) and a persistence forecast starting from this time is able to reasonably predict SSH anomalies only 
up to 5 months in advance, based on when the correlation between observations and forecasts drops below 
the 99% confidence level. On the other hand, model hindcasts starting from June(0) are able to simulate 
SSH anomalies at Fremantle up to 13 months in advance, which clearly outperforms persistence. If the 
hindcast starts from December, the difference in skill between model hindcasts and persistence is relatively 
small, because an ENSO event matures in December and SSH anomalies are large in amplitude, which 
makes persistence more reliable.

We also developed a purely statistical forecast model, which is formulated by regressing Fremantle SSH 
anomalies onto the multivariate ENSO index. The statistical model is able to simulate the phase of SSH 
anomalies, but its skill in simulating the amplitude of anomalies is worse than the numerical ocean model 
methodology. It is possible that a more sophisticated multi-predictor statistical model would exhibit im-
proved performance, but our comparisons nonetheless emphasize the value of using a dynamically based 
ocean prediction scheme.

In summary, we have shown that SSH anomalies along the west coast of Australia can be predicted using a 
simple dynamical ocean model forced by ENSO-related winds in the equatorial Pacific. We have illustrat-
ed this by running the model in hindcast mode, using the DJF means of the multivariate ENSO index to 
compute surface wind forcing (Section 3). To make a realistic prediction from June, one would also need to 
predict the mean of the ENSO index for the coming DJF as is done in true prediction systems like those dis-
cussed in Hendon and Wang (2010) and Doi et al. (2013). While it is beyond the scope of this study to make 
actual forecasts, application of our methodology can be useful as a baseline for gauging the performance of 
forecasts made by more sophisticated CGCM systems.
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Data Availability Statement
Tide gauge SSH data were obtained from the website of Permanent Service for Mean Sea Level (https://
www.psmsl.org/data/obtaining/). The multivariate ENSO index Version 2 was obtained from the Nation-
al Oceanic and Atmospheric Administration/the Physical Sciences Laboratory (https://psl.noaa.gov/enso/
mei/).
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